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Abstract. We compute the renormalization of the complete CKM matrix in the MS scheme and perform a
renormalization group analysis of the CKM parameters. The calculation is simplified by studying only the
Higgs sector, which for the β-function of the CKM matrix is at one loop the same as in the full Standard
Model. The renormalization group flow including QCD corrections can be computed analytically using the
hierarchy of the CKM parameters and the large mass differences between the quarks. While the evolution
of the Cabibbo angle is tiny Vub and Vcb increase sizably. We compare our results with the ones in the full
Standard Model.

1 Introduction

In the Standard Model (SM) and in all possible extensions
the origin of flavor mixing lies in the Higgs sector and thus
belongs to its least understood part. While in the quark
sector this phenomenon is parametrized by the Cabibbo-
Kobayashi-Maskawa (CKM) matrix [1], it is still not clear
whether a similar effect exists for the leptons. Here mixing
can only happen once the neutrinos have masses, for which
recently some evidence has been given [2].

As a first step in understanding the origin of the CKM
matrix it is useful to compute its renormalization group
evolution, since one may hope that some unknown physics
fixes a CKM matrix or, equivalently, mass matrices for
quarks and leptons at a high scale Λ. Thus its structure
can give some hint on the overlying theory which produces
this CKM matrix as an effective coupling. The CKM ma-
trix elements are measured at hadronic scales of a few
GeV, or maybe at the electroweak scale if they are ex-
tracted from W decays one day.

Studies of the renormalization of the CKM matrix can
already be found in the literature. The one loop contri-
butions to the CKM matrix have been computed in [3] in
the on-shell scheme. It has been found that the corrections
are small and hence they have been ignored in all analy-
sis. However, in [3] the renormalization group flow has not
been investigated. In a couple of other papers [4–8] the
renormalization group flow of the parameters of the Higgs
sector has been studied. Since the system of renormaliza-
tion group equations is quite complicated these studies
have been performed numerically. If one considers non-
SM scenarios mixing can also occure in the leptonic sector
which has been studied in [9].

In the present paper we present a renormalization group
study of the CKM matrix, where we simplify matters in
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such a way that we may even construct an analytic so-
lution of the renormalization group equations which is an
excellent approximation below the GUT scale of 1015 GeV.
Thus we restrict ourselves to a one-loop analysis in the
limit of vanishing elektroweak gauge couplings. Conse-
quently for the renormalization of the CKM matrix only
the Higgs sector remains but, as we shall see, the full SM
result is reproduced at one loop.

In the next section we shall “ungauge” the elektroweak
part of the SM by taking the limit of vanishing gauge
coupling in an appropriate way. Since the renormalization
group evolution of the quark masses is mainly driven by
strong interactions, the QCD part remains as in the full
SM. Section 3 discusses the renormalization of this pure
Higgs sector. In particular it is shown that due to a Ward
identity the renormalization of the CKM matrix only in-
volves the wave function renormalization matrices of the
left handed quarks. This is true to all orders in the loop
expansion. In Sect. 4 we formulate the renormalization
group equations for the CKM parameters and the masses
and solve them analytically in a certain approximation.
In Sect. 5 we check the quality of our analytic solution
by comparing with the full SM, i.e. with non-vanishing
electroweak couplings. Finally we discuss our results and
conclude.

2 Higgs sector and flavor mixing

Flavor mixing is entirely generated by the Higgs sector
and the physics of this effect should be understandable
without the complications of the gauge theory. Thus we
choose to “ungauge” SU(2)⊗U(1)Y in the following way.
We take the limit g1 → 0 and g2 → 0 (g1 and g2 being
the SU(2) and U(1)Y couplings respectively) keeping the
vacuum expectation value of the Higgs field fixed. Fur-
thermore, the ratio g1/g2 defining the weak mixing angle
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does not enter our consideration. In this limit the lon-
gitudinal modes of the weak bosons appear as massless
scalar fields, namely as the Goldstone bosons of the spon-
taneously broken SU(2)L, while the transverse degrees of
freedom decouple.

We shall group all known quarks and leptons into left
and right handed doublets according to
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(
u

d

)
L

Lc =

(
c

s

)
L

Lt =

(
t

b

)
L

(1)

Ru =

(
u

d

)
R

Rc =

(
c

s

)
R

Rt =

(
t

b

)
R

(2)

Le =

(
νe

e

)
L

Lµ =

(
νµ

µ

)
L

Lτ =

(
ντ

τ

)
L

(3)

Re =

(
νe

e

)
R

Rµ =

(
νµ

µ

)
R

Rτ =

(
ντ

τ

)
R

. (4)

Note that we have also introduced right handed neutrino
fields in order to complete the right handed leptonic dou-
blets. We shall write the Higgs sector of the SM first as
a linear sigma model which has a full SU(2)L ⊗ SU(2)R

symmetry. Upon spontaneous breaking this symmetry is
reduced to SU(2)L+R corresponding to the custodial sym-
metry of the SM. As we shall see, flavor mixing is related
to the explicit breaking of this symmetry and hence we
introduce some explicit breaking later.

Under this symmetry the left handed leptons and quarks
transform as a (2, 0) while the right handed components
are assigned to the (0, 2) representation. Furthermore, to
make contact with the weak hypercharge of the SM we
postulate another U(1) symmetry under which we assign
the following charges

Lq
U(1)−→ ei (1/3) ωLq (q = u, c, t)

Ll
U(1)−→ ei (−1) ωLl (l = e, µ, τ)

Rq
U(1)−→ ei (1/3) ωRq (q = u, c, t)

Rl
U(1)−→ ei (−1) ωRl (l = e, µ, τ) .

(5)

The four Higgs fields are gathered in a 2 × 2 matrix ac-
cording to

H =

(
ϕ0 − iχ

√
2 φ+

−√
2 φ− ϕ0 + iχ

)
(6)

transforming in an obvious way under (2, 2̄) while it is
invariant under this additional U(1). The Higgs fields are
governed by the standard lagrangian of the linear sigma
model

L =
1
2

Tr
[(

∂µH
†) (∂µ

H)
]− λ

64
[
Tr
(
H

†
H
)]2

+
µ2

4
Tr
(
H

†
H
)

(7)

which exhibits spontaneous symmetry breaking, if µ2 > 0.
We choose the vacuum expectation value such that at tree
level

ϕ0 = v + H , v =

√
4µ2

λ
. (8)

This choice yields a breaking term proportional to the unit
matrix which breaks the full SU(2)L ⊗SU(2)R symmetry
down to the diagonal SU(2)L+R which is usually called
custodial SU(2). The field H is the physical Higgs field
while the other fields χ, φ± are the Goldstone bosons and
correspond to the longitudinal degrees of freedom of the
Z0 and W±.

The only possible renormalizable coupling terms of the
Higgs fields to the matter fields invariant under SU(2)L ⊗
SU(2)R and the additional U(1) are

L(0)
ffH = −

∑
A,B=u,c,t

L̄AH RBGAB

−
∑

a,b=e,µ,τ

L̄aH Rbgab + h.c. . (9)

Obviously the matrices of Yukawa couplings GAB and gab

can be diagonalized by the usual biunitary transformation
without any effects on the other terms in the lagrangian
and hence no flavor mixing can appear as long as the cus-
todial SU(2)L+R remains unbroken.

Different masses for up- and down-type quarks as well
as the coupling to hypercharge break the custodial SU(2)
in the full SM. In the “ungauged” model we introduce the
breaking of SU(2)L+R by an additional coupling of the
form:

L(1)
ffH = −

∑
A,B=u,c,t

L̄AH σ3RBG̃AB

−
∑

a,b=e,µ,τ

L̄aH σ3Rbg̃ab + h.c. , (10)

which also breaks SU(2)R down to a U(1)R. In this way
the relation between the breaking of custodial SU(2) and
mixing becomes transparent.

The symmetry needed for the elektroweak part of the
SM is still present as a combination of the U(1) introduced
above and this U(1)R. Hence we introduce a hypercharge
U(1)Y , under which the fermion dubletts transform ac-
cording to

Lq
U(1)Y−→ ei (1/3) ωLq (q = u, c, t)

Ll
U(1)Y−→ ei (−1) ωLl (l = e, µ, τ)

Rq
U(1)Y−→ ei (1/3+σ3) ωRq (q = u, c, t)

Rl
U(1)Y−→ ei (−1+σ3) ωRl (l = e, µ, τ) .

(11)

Due to the explicit breaking of custodial SU(2) the
up and down type quarks aquire different mass matrices
defined as

Gu,AC ≡ v
(
GAC + G̃AC

)
Gd,BD ≡ v

(
GBD − G̃BD

)
. (12)
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In the following we shall discuss only quarks for which we
introduce the compact notation

uL,R =


u

c

t




L,R

dL,R =


d

s

b




L,R

. (13)

The mass terms for the quarks take the form

− ūLGuuR − ūRG†
uuL − d̄LGddR − d̄RG†

ddL (14)

which upon diagonalization yields the mass spectrum of
the quarks

mu = SL†
u Gu SR

u = diag (mu, mc, mt)

md = SL†
d Gd SR

d = diag (md, ms, mb) (15)

where mi > 0. As in the full SM the CKM matrix is given
by

V ≡ SL †
u SL

d . (16)

In this basis of mass eigenstates we find in the broken
phase

L = LHiggs
kin + Lquarks

kin + LHiggs
int

+Lneutral
int + Lcharged

int (17)

LHiggs
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1
2
H
(
2 − M2

H

)
H +

1
2
χ
(
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χ

)
χ

+φ+ (2 − M2
χ

)
φ− (18)

LQuarks
kin = ūLi/∂uL + ūRi/∂uR − ūLmuuR − ūRmuuL

+d̄Li/∂dL + d̄Ri/∂dR

−d̄LmddR − d̄RmddL (19)

LHiggs
int = −vM2

χH − M2
H − M2

χ

2v

[
H3 + Hχ2 + 2Hφ+φ−

]

−M2
H − M2

χ

8v2

[
H4 + χ4 + 4

(
φ+φ−)2 + 2H2χ2

+4H2φ+φ− + 4χ2φ+φ−
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(20)

Lneutral
int = −1

v
ūLmuuR (H − iχ) − 1

v
ūRmuuL (H + iχ)

−1
v
d̄Lmd dR (H − iχ)

−1
v
d̄Rmd dL (H + iχ) (21)

Lcharged
int = −

√
2

v
ūLVmd dRφ+ +

√
2

v
ūRmuVdLφ+

+
√

2
v

d̄LV†muuRφ− −
√

2
v

d̄RmdV†uLφ−. (22)

For the purpose of renormalization we have also intro-
duced a mass for the Goldstone bosons such that the
masses of the Higgs particles are

M2
H ≡ 3

4
λv2 − µ2

M2
χ ≡ 1

4
λv2 − µ2. (23)

At tree level M2
χ = 0 but for renormalization it is advan-

tageous to keep v as an independent parameter. Equation
(21) represents the neutral currents and the interactions
with the physical Higgs. These contributions - as in the
full SM - do not induce quark mixing. The charge current
interactions (22) involve the CKM matrix V and are the
source of flavor mixing.

3 Renormalization

The Higgs sector is introduced in such a way that the full
as well as the “ungauged” SM is renormalizable. We are
aiming here at the one loop renormalization of the CKM
matrix which can be obtained from the quark self energies
only. This is due to a Ward identity which actually holds
to all orders and even in the full SM. It is a consequence of
SU(2)L and is derived in the unbroken phase. In this phase
global SU(2)L is a manifest symmetry which translates
into the Ward identities

δΓ

δφ−
0

ϕ0,0 +
√

2
[

δΓ

δdL,0
uL,0 + d̄L,0

δΓ

δūL,0

]
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δΓ
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0

ϕ0,0 −
√

2
[

δΓ

δuL,0
dL,0 + ūL,0

δΓ

δd̄L,0

]
= 0 (24)

for the generating functional Γ of one particle irreducible
Greensfunctions. The functions φ±

0 and u/dL,0 have to be
regarded as sources for the corresponding fields. (24) holds
for the bare1 Higgs field and bare elektroweak eigenstates
and we have suppressed terms which will not appear as
external states. In the broken phase the same Ward iden-
tities hold with ϕ0,0 replaced by v0 + H0

δΓ

δφ−
0

v0 +
√

2
[

δΓ

δdL,0
uL,0 + d̄L,0

δΓ

δūL,0

]
= 0
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0
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√

2
[

δΓ

δuL,0
dL,0 + ūL,0

δΓ

δd̄L,0

]
= 0 . (25)

We have ommited the term with the physical Higgs field
since it does not contribute to the renormalization of the
charged current. Transforming to bare mass eigenstates
according to

uL/R,0 → SL/R
u,0 uL/R,0

dL/R,0 → SL/R
d,0 dL/R,0 (26)

we get

δΓ

δφ−
0

v0 +
√

2
[

δΓ

δdL,0
V†

0uL,0 + d̄L,0V
†
0

δΓ

δūL,0

]
= 0

δΓ

δφ+
0

v0 −
√

2
[

δΓ

δuL,0
V0dL,0 + ūL,0V0

δΓ

δd̄L,0

]
= 0 .

(27)

The bare biunitary transformation (26) relating bare mass
and elektroweak eigenstates is defined to diagonalize the

1 Bare parameters and fields will be labeled with an addi-
tional subscript 0.
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bare mass matrices. As a consequence in (27) the bare
CKM matrix

V0 = SL †
u,0 SL

d,0 (28)

appears and the bare mass matrices of the mass eigen-
states are diagonal. In other words, in order not to violate
the Ward identities mass renormalization has to be per-
formed in such a way that no off diagonal mass countert-
erms are needed.

Upon functional differentiation with respect to up- and
down quark field sources the identities (27) relate quark
matrix elements of the charged current (22) to the two
point functions of the quarks. As a consequence the renor-
malization of the charge current which defines the renor-
malization prescription for the CKM matrix is completely
determined by the wave function renormalization constants
of the left handed quarks. This can be seen most easily as
follows. If we assume that dimensional regularization re-
spects the symmetry, the Ward identities are forminvari-
ant under renormalization, i.e. they must hold also for the
renormalized fields and parameters

δΓ

δφ− v +
√

2
[

δΓ

δdL
V†uL + d̄LV† δΓ

δūL

]
= 0

δΓ

δφ+
0

v −
√

2
[

δΓ

δuL
VdL + ūLV

δΓ

δd̄L

]
= 0 . (29)

For (27,29) both to be valid the bare and the renormalized
CKM matrix have to fulfil the relations

V0 =
√

Zu,L V
√

Zd,L
−1

(30)√
Z†

u,LZu,L V = V
√

Z†
d,LZd,L (31)

where V0 is the bare, and V the renormalized CKM ma-
trix and Zu/d,L are the matrices of wave function renor-
malization of the left handed up and down quarks

uL,0 =
√

Zu,L uL

dL,0 =
√

Zd,L dL . (32)

Note that in perturbation theory we can evaluate the
square root of these matrices as well as we can invert them.
From equations (30, 31) it follows that the unitarity of the
bare CKM matrix implies the unitarity of the renormal-
ized CKM matrix (and vice versa) and has to be regarded
as a constraint on the Zu/d,L. The renormalization group
equation for the CKM matrix

d

d lnµ
V = βV (33)

is derived in the usual way by differentiating the bare
CKM with respect to lnµ. Due to (30) this β-function
can be expressed in terms of the anomalous dimension
matrices of the fields

γu/d,L = Z−1
u/d,L

d

d lnµ
Zu/d,L (34)

f

H; �

f f d; u

�

u; d u; d

Fig. 1. Quark self energy diagrams

as

βV =
1
2
[Vγd,L − γu,LV] . (35)

The second of the Ward identities allows us to eliminate
the hermitian parts of the field anomalous dimensions and
the final result for the β-function reads

βV =
1
4
[V(γd,L − γ†

d,L) − (γu,L − γ†
u,L)V] . (36)

The appearence of only the antihermitian part is natural
since upon exponentiation, i.e. solving the renormaliza-
tion group equation, this yields the unitary contribution
to the field renormalization matrix which can be absorbed
into a redefinition of the CKM matrix without destroying
its unitarity. This relation still holds to all orders and to
evaluate it at one loop one needs to compute the divergent
part of the quark self energies shown in Fig. 1.

From this we obtain for the hermitian and antihermi-
tian parts of the field anomalous dimensions for the left
and right handed quarks

(
γ
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)
=

1
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u (37)(
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)
=
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]
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AC
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†)
AC
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γ

(1)
u,L − γ

(1)†
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)
AC
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1
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dV

†)
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)
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=
(
γ

(1)
u,L − γ

(1)†
u,L

)
AA

=
1

4π2v2 3i su,A (41)(
γ

(1)
d,R + γ

(1)†
d,R

)
=

1
4π2v2 2m2

d (42)(
γ

(1)
d,L + γ

(1)†
d,L

)
=

1
4π2v2

[
m2

d + V†m2
uV
]

(43)

(
γ

(1)
d,R − γ

(1)†
d,R

)
BD

=
1

4π2v2 6
md,Bmd,D

m2
d,B − m2

d,D(
V†m2

uV
)
BD

B 6= D (44)
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(
γ

(1)
d,L − γ

(1)†
d,L

)
BD

=
1

4π2v2 3
m2

d,B + m2
d,D

m2
d,B − m2

d,D(
V†m2

uV
)
BD

B 6= D (45)(
γ

(1)
d,R − γ

(1)†
d,R

)
BB

=
(
γ

(1)
d,L − γ

(1)†
d,L

)
BB

=
1

4π2v2 3i sd,B (46)

where the capital letter indices run from 1 to 3, mu/d,B

is the mass of the up/down type quark of the B’th family
and the su/d,A are explained after equation (50).

From the self energy diagrams in Fig. 1 we can also
compute the Higgs contribution to the mass renormaliza-
tion. The bare mass matrices are written as

m0
u = mu + δmu (47)

m0
d = md + δmd . (48)

We choose the renormalization prescription such that the
bare mass matrices and hence also δmu/d are diagonal.
This is possible, since we can absorb the off-diagonal ele-
ments into the off-diagonal elements of the antihermitian
part of the right-handed wave function renormalization
matrices according to

/p ω+ Σu,R
div + /p ω− Σu,L

div + mu ω− Σu,S
div + Σu,S

div mu ω+

+/p ω+
1
2

(
δZu,R + δZu,R †

)
+ /p ω−

1
2

(
δZu,L + δZu,L †

)
−1

2

(
mu δZu,R + δZu,L † mu

)
ω+

−1
2

(
mu δZu,L + δZu,R † mu

)
ω−

−δmu ω+ − δmu ω− = 0 . (49)

The Σ are given by a decomposition of the divergent parts
of the unrenormalized self energy diagrams in Fig. 1

Σf
div = /p ω+ Σf,R

div + /p ω− Σf,L
div + ω+ mf Σf,S

div

+Σf,S
div mf ω− . (50)

The diagonal elements (41,46), i.e. the parameters su/d,A,
are not fixed. This reflects the freedom to rephase the
quark fields and from equation (49) it follows that the left
and right handed contributions are identical but arbitrary.

Using (36) we derive the one loop β-function for the
CKM matrix as

(
β

(1)
V

)
AB

=
1

16π2v2 3

[
VAB i (sd,B − su,A) (51)

−
∑

D 6=B

∑
C

VADV ∗
CDVCB

m2
d,B + m2

d,D

m2
d,B − m2

d,D

m2
u,C

−
∑
C 6=A

∑
D

VADV ∗
CDVCB

m2
u,A + m2

u,C

m2
u,A − m2

u,C

m2
d,D

]

which matches exactly the full SM result [3]. The one loop
contribution of the Higgs interactions to the mass renor-

H;�; �

H H

H;�; �

H H

f

H H

Fig. 2. Self energy of the physical Higgs

ff f

g

Fig. 3. QCD contribution to the quark self energy

malization using our prescription is

δmu,A =
1

16π2v2 ∆
3
2

mu,A

[
m2

u,A − (Vm2
dV

†)
AA

]

δmd,B =
1

16π2v2 ∆
3
2

md,B

[
m2

d,B − (V†m2
uV
)
BB

]
(52)

where ∆ = 2/ε. Finally also the wave function renormal-
ization constant ZH of the Higgs field is needed since this
governs the renormalization of the vacuum expectation
value

v0 = ZH v . (53)

From the Higgs self energy diagrams shown in Fig. 2 we
extract the one loop contribution to the Higgs field renor-
malization constant

δZH = − 1
16π2v2 ∆ 2Nc Tr

(
m2

u + m2
d

)
. (54)

As far as the elektroweak interaction is concerned this
will also be the full answer for β

(1)
V since we are working at

one loop. However, compared to the elektroweak contribu-
tion a much larger effect is the renormalization due to the
strong interactions which do not induce flavor mixing and
thus modify only the renormalization group functions for
the masses but not the β-function for the CKM matrix.
Computing the QCD self energies shown in Fig. 3 it turns
out that we have

δmu,A =
1

16π2v2 ∆
3
2

mu,A

[
m2

u,A − (Vm2
dV

†)
AA

]

−2
αs

π

∆

2
mu,A

δmd,B =
1

16π2v2 ∆
3
2

md,B

[
m2

d,B − (V†m2
uV
)
BB

]

−2
αs

π

∆

2
md,A . (55)

Thus we have gathered all the one loop contributions
needed to perform a renormalization group study of the
CKM matrix.
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V =




c12 c13 s12 c13 s13 e−iδ13

−s12 c23 − c12 s23 s13 eiδ13 c12 c23 − s12 s23 s13 eiδ13 s23 c13

s12 s23 − c12 c23 s13 eiδ13 −c12 s23 − s12 c23 s13 eiδ13 c23 c13


 (67)

4 Renormalization group flow

We already derived the β-function for the CKM matrix
and it only remains to obtain the mass anomalous dimen-
sions from (55)

γu,A = −m−1
u,A µ

d

dµ
δmu,A

γd,B = −m−1
d,B µ

d

dµ
δmd,B . (56)

and the anomalous dimension γv of the vacuum expecta-
tion value from (54)

γ(1)
v =

ε

2
− µ

d

dµ
δZH (57)

in order to end up with a closed set of differential equa-
tions. The term linear in ε appears in (57) since the vac-
uum expectation value changes its dimensionality in di-
mensional regularization. The total derivative with respect
to lnµ is in general

µ
d

dµ
= µ

∂

∂µ
+ vγv

∂

∂v
+ M2

HγH
∂

∂M2
H

+M2
χγχ

∂

∂M2
χ

+ muγu

∂

∂mu

+mdγd

∂

∂md
+ βV

∂

∂V
+ βαs

∂

∂αs
(58)

but to one loop this reduces to

µ
d

dµ
=

1
∆

v
∂

∂v
− 2αs

1
∆

∂

∂αs
. (59)

Since the various renormalization group functions are ob-
tained by acting with the total derivative on one loop
contributions to the bare parameters and renormalization
constants, we have kept in (59) only the lowest order con-
tributions, i.e. the terms linear in ε. These cancel with the
divergent parts of the one loop terms in the bare quantities
yielding a finite contribution to the one loop renormaliza-
tion group functions. In this way we obtain for the mass
anomalous dimensions

γ
(1)
u,A =

1
16π2v2 3

[
m2

u,A − (Vm2
dV

†)
AA

]
− 2

αs

π

γ
(1)
d,B =

1
16π2v2 3

[
m2

d,B − (V†m2
uV
)
BB

]
− 2

αs

π
(60)

and for the anomalous dimension of the vacuum expecta-
tion value

γ(1)
v = − 1

16π2v2 2Nc Tr
(
m2

u + m2
d

)
(61)

where we have dropped the term linear in ε.
Thus the complete set of differential equations is

µ
d

dµ
v = γ(1)

v v (62)

µ
d

dµ
mu,A = γ

(1)
u,A mu,A (63)

µ
d

dµ
md,B = γ

(1)
d,B md,B (64)

µ
d

dµ
VAB =

(
β

(1)
V

)
AB

(65)

µ
d

dµ
αs = −2αs

αs

π
β(1) (66)

where β(1) = (33 − 2nf )/12. This set of equations is still
valid for an arbitrary number of families. The case of two
families is practical trivial and hence we switch directly to
the relevant case of three families. Instead of working with
the full matrices VAB we choose the standard parametriza-
tion of the Particle Data Group [10] (see (67) on top of
the page) with

s12 = sin(θ12), c12 = cos(θ12),
s13 = sin(θ13), c13 = cos(θ13),
s23 = sin(θ23), c23 = cos(θ23) (68)

and write the renormalization group equations for the
three angles θij and the phase δ13

β
(1)
12 = µ

d

dµ
θ12,

β
(1)
23 = µ

d

dµ
θ23,

β
(1)
13 = µ

d

dµ
θ13,

β
(1)
δ = µ

d

dµ
δ13. (69)

The expressions for β
(1)
ij , β

(1)
δ and γ

(1)
u/d,A in terms of the

angles θij and the phase δ13 are quite lengthy and are
deferred to the appendix. Together with the equations for
the masses (63, 64), the vacuum expectation value (62)
and the strong coupling constant (66) this is a coupled
system of 12 differential equations which cannot be solved
analytically without approximations. We haved studied
the exact solutions numerically and found that they are
reproduced with excellent accuracy by an approximative
analytical solution to be discussed below.
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We shall study the renormalization group flow start-
ing at the scale of top-quark mass; the discussion of the
renormalization group flow below this scale is a separate
issue since on then has to integrate out the top, bottom
and charm quarks at the appropriate mass scales.

As initial values at the scale µ0 ≈ mt we choose [10,
11]

v = 245.3 GeV, αs = 0.109,

θ12 = 0.221, θ23 = 0.039,

θ13 = 0.0031, δ13 = 1.26,

mu,3 ≡ mt = 165.8 GeV.

(70)

The initial value of the running top mass mt(µ) in the
MS-scheme is related to the pole mass in the usual way

mt(m
pole
t ) = mpole

t [1 − αs

π
CF ] , (71)

where CF = 4/3 and the top quark pole mass is given
by the experimental measured value mpole

t = (173.8 ±
5.2) GeV.

The masses of the light quarks (u, c, d, s, b) at mt have
been evolved from low scale by QCD corrections only:

mu,1 ≡ mu = 2.0 MeV,

md,1 ≡ md = 3.7 MeV,

mu,2 ≡ mc = 0.72 GeV, (72)
md,2 ≡ ms = 72 MeV,

md,3 ≡ mb = 3.0 GeV.

Note that our results for the CKM matrix elements do
not depend critically on the exact values for the five light
quark masses, hence we do not need to include uncertain-
ties in these masses.

The observed mass spectrum of the quarks together
with the hierarchy of the CKM angles allows us to con-
struct an excellent approximation for this system which
can be solved analytically.

First of all we observe that the ratios (m2
u/d,A+m2

u/d,C)
/(m2

u/d,A − mu/d,C)2 appearing in βij and βδ are due to
the large differences in the quark masses practically ±1.
Furthermore the renormalization group functions depend
on m2

u/d,A/v2 which is extremely small except for the top
quark. Hence we neglect these terms and obtain

β12 =
3

16π2 c12

[
s12
{
s223 − c2

23 s213
}

−2c12 c23 s23 s13 cos(δ13)
]

m2
t

v2

β23 =
3

16π2 c23 s23
m2

t

v2

β13 =
3

16π2 c2
23 c13 s13

m2
t

v2

βδ =
3

16π2

c12 c23 s23 s13
s12

sin(δ13)
m2

t

v2

γv = − 6
16π2

m2
t

v2

γu,1 = −2
αs

π

γu,2 = −2
αs

π

γu,3 =
3

16π2

m2
t

v2 − 2
αs

π
(73)

γd,1 = − 3
16π2

[
s212 s223 + c2

12 c2
23 s213

−2 c12 c23 s12 s23 s13 cos(δ13)
]

m2
t

v2

−2
αs

π

γd,2 = − 3
16π2

[
c2
12 s223 + s212 c2

23 s213

+2 c12 c23 s12 s23 s13 cos(δ13)
]

m2
t

v2

−2
αs

π

γd,3 = − 3
16π2 c2

23 c2
13

m2
t

v2 − 2
αs

π
.

Secondly we make use of the hierarchy of the CKM angles

θ12 = O(10−1), θ23 = O(10−2), θ13 = O(10−3) (74)

thus keeping only terms of O(10−3) in γu/d,A, βij/θij and
βδ/δ. From this we obtain the very simple system

β23 =
3

16π2

m2
t

v2 θ23

β13 =
3

16π2

m2
t

v2 θ13

γd,1 = −2
αs

π

γd,2 = −2
αs

π

γd,3 = − 3
16π2

m2
t

v2 − 2
αs

π
(75)

γu,1 = −2
αs

π

γu,2 = −2
αs

π

γu,3 =
3

16π2

m2
t

v2 − 2
αs

π

γv = −2
3

16π2

m2
t

v2 .

The right hand side is determined by the top-Yukawa cou-
pling Yt = mt/v for which we derive the renormalization
group equation

d

lnµ
Yt = Yt

[
9

16π2 Y 2
t − 2

αs(µ)
π

]
(76)



204 C. Balzereit et al.: Renormalization group evolution of the CKM matrix

which can be solved analytically

Yt(µ) =

[
Y −2

t (µ0)
(

αs(µ0)
αs(µ)

) 2
β(1)

− 9
16π

1
β(1) − 2

1
αs(µ)

×
{

1 −
(

αs(µ0)
αs(µ)

) 2
β(1) −1

}]− 1
2

. (77)

Where β(1) is the one-loop QCD β-function given after
equation (66). In leading logarithmic approximation the
running of the strong coupling constant is given by the
solution of (66)

αs(µ) =
αs(µ0)

1 + 2
π β(1) αs(µ0) ln µ

µ0

. (78)

The differential equations (75) for the masses, angles and
the vacuum expectation value can be written in the com-
pact form

1
y

µ
d

dµ
y =

3
16π2 cy Y 2

t (µ) − qy 2
αs(µ)

π
(79)

where y = θ12, θ13, θ23, δ13, mu, md, mc, ms, mb, mt, v and

cy =




1 if y = θ23, θ13, mt

−1 if y = mb

−2 if y = v

0 if y = θ12, δ13, mu, md, ms, mc

(80)

and

qy =

{
0 if y = θ12, θ23, θ13, δ13, v

1 if y = mu, md, ms, mc, mb, mt.
(81)

The analytical solution of (79) reads

y(µ) = y(µ0)

[
1 +

9
16π

1
β(1) − 2

1
αs(µ0)

m2
t (µ0)

v2(µ0)

×
{

1 −
(

αs(µ0)
αs(µ)

)1− 2
β(1)
}]− 1

6 cy

×
[

αs(µ0)
αs(µ)

]− 1
β(1) qy

(82)

and in particular for the CKM matrix elements Vub ≈
θ13e

iδ13 and Vcb ≈ θ23

|Vub(µ)|
|Vub(µ0)| =

|Vcb(µ)|
|Vcb(µ0)|

=

[
1 +

9
16π

1
β(1) − 2

1
αs(µ0)

m2
t (µ0)

v2(µ0)

×
{

1 −
(

αs(µ0)
αs(µ)

)1− 2
β(1)
}]− 1

6

. (83)

As a cross check we also solved the equations (62) to
(66) numerically without any approximation. The devia-
tion of the analytic solution from these numerical results
are estimated by the size of the integration interval of lnµ
of order O(10) times the size of the terms of order O(10−4)
neglected in the RG- and β-functions. Indeed the devia-
tion is less than a half percent for each parameter.

The results of the analytic solution are shown in the
Figs. 4 to 7 in the next chapter together with the results
of the full SM.

5 Comparison with the full SM

Up to now we have neglected the complete electroweak
part and all leptons of the SM. To be able to test the
precission of our analytic approximation we have solved
the renormalization group equations numerically in the
full SM. This approach has also been chosen in [4–8].

Five additional parameters are entering the analysis.
A convenient choice is the coupling constant gY of the
U(1)Y -hypercharge, the coupling constant gW of the
SU(2)L-weak interaction and the masses of the electron,
the muon and the tau. The one-loop results for the RG-
functions of these parameters are

γg2
Y

=
g2

Y

4π2

1
12


1 +

∑
fermions

(Y 2
L + Y 2

R)


 (84)

γg2
W

=
g2

W

4π2

−43 + 2 Nm

12
(85)

γl =
g2

Y

4π2

−11
16

+
g2

W

4π2

3
16

+
3m2

l

16π2v2

(l = e, µ, τ) (86)

where Nm is the number of SU(2)L multiplets. Further-
more, in the RG-functions of the quarks given in appendix
an additional term appears

γelweak
u,A =

g2
Y

4π2

−5
48

+
g2

W

4π2

3
16

(A = u, c, t) (87)

γelweak
d,B =

g2
Y

4π2

7
48

+
g2

W

4π2

3
16

(B = d, s, b) (88)

while for the vacuum expectation value the term

γelweak
v =

g2
Y

4π2

1
4

+
g2

W

4π2

3
4

(89)

must be added. As already pointed out in Sect. 3 the β-
functions for the CKM parameters in the full SM are the
same as in the “ungauged” model. This follows from the
fact that the electroweak contributions to the divergent
part of ΣR and ΣL are diagonal, flavor independent and
real. In other words, they do not have any antihermitian
parts and thus cannot contribute to the renormalization
constant of the CKM matrix.
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Fig. 4. Renormalization group scaling of mt und v.
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± 5.2GeV in the top quark pole mass
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Fig. 7. Renormalization group evolution of the
phase δ13
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Fig. 8. The relative difference between the analytic
solution and the numerical results in the full SM for
Vub

The RG-functions for the coupling constants decouple
and lead to:

αY (µ) =
g2

Y

4π
=

1
1

αY (µ0)
− 41

12π ln( µ
µ0

)

(µ, µ0 ≥ mt) (90)

αW (µ) =
g2

W

4π
=

1
1

αW (µ0)
+ 19

12π ln( µ
µ0

)

(µ, µ0 ≥ mt). (91)

Figure 4 shows the running of the top quark mass and
the vacuum expectation value between mt and the large
scale 1015 GeV according to our analytical approximation
and the numerical results in the full SM. While the vac-
uum expectation value differs significantly, the top quark
mass is practically the same in both cases.

The renormalization group evolution of the CKM ma-
trix elements |Vcb| and |Vub| is plotted in Figs. 5 and 6.

Figure 7 shows that the phase δ13 is practically constant
up to the GUT scale even in the full SM.

Although the difference between the analytic solution
and the full SM is significant for the vacuum expectation
value, the relative deviations for the CKM matrix elements
are less than 3% for |Vcb| and |Vub| in the whole range
of mt up to the GUT scale. In our approximation these
elements are identical with the parameters θ23 and θ13.
The approximation of constant parameters θ12 and δ13 is
even better with a relative difference of less than a half
percent. As an example the relative deviation of |Vub| is
plotted in Fig. 8. The corresponding plot for Vcb is the
same within the width of the lines.

6 Conclusions

We have studied the scale dependence of the CKM pa-
rameters and quark masses. To one loop order it turned
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out that an “ungauged” SM (i.e. only the Higgs) sector
yields the same one loop result for the β-function for the
CKM matrix as the full SU(3)C ⊗SU(2)L ⊗U(1)Y gauge
theory. This is obvious, since the renormalization of the
Yukawa couplings due to transverse gauge bosons is pro-
portional to the unit matrix and hence does not change
δV. The renormalization of the CKM matrix is governed
by a Ward identity which allows us to express its renor-
malization solely in terms of the quark self energies. This
result is valid in the full SM and we exploited it in the
Higgs sector to derive the renormalization group functions
for the masses and CKM parameters.

Studying only the Higgs sector it becomes obvious that
the running of the CKM matrix is governed by the Yukawa
couplings which are very small except for the top quark.
This motivates the limit in which all quark masses ex-
cept the one of the top are set to zero. However, it is well
known that in such a limit no mixing can occure due to
the degeneracy of the down type quark masses. In our
results this is reflected by the appearence of the ratios
(m2

u/d,A + m2
u/d,C)/(m2

u/d,A − m2
u/d,C). The limiting val-

ues of these single out a basis in flavor space relative to
which the CKM rotation can be defined. Using the phys-
ical values of the masses this ratios are either +1 or −1
which simplifies the renormalization group equations sig-
nificantly. Putting in also the hierarchy of the CKM angles
the renormalization group equations can be solved analyt-
ically with an accuracy better than a few percent.

The renormalization group flow of the mixing between
the first two families turns out to be very small since the
corresponding Yukawa couplings are tiny.

For the third family the effects become sizeable and the
parameters such as Vcb and Vub change at a level of 16%
between mt and the large scale 1015 GeV. In the full SM
this increase is reduced to 13%. However, for the CKM ma-
trix elements the analytic approximation solution differs
less than 3% from the full numerical results. Since in our
approximation Vus and the ratio Vub/Vcb do not change
with the renormalization scale all Wolfenstein parameters
[12] except A = Vcb/V 2

us are scale independent.
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Appendix: RG- and β–functions in the particle data group parametrization

β12 =
3

16π2v2

{
m2

d,1 + m2
d,2

m2
d,1 − m2

d,2

[
m2

u,1 s12 c12 c2
13

+ m2
u,2

({
s212 − c2

12

}
s23 c23 s13 cos(δ13) + s12 c12

{
s223 s213 − c2

23

})

+ m2
u,3

(
−
{

s212 − c2
12

}
s23 c23 s13 cos(δ13) − s12 c12

{
s223 − c2

23 s213
})]

+
m2

d,1 + m2
d,3

m2
d,1 − m2

d,3

[
m2

u,1 s12 c12 s213

−m2
u,2 s12s23 s13

(
c12 s23 s13 + s12 c23 cos(δ13)

)

− m2
u,3 s12c23 s13

(
c12 c23 s13 − s12 s23 cos(δ13)

)]

+
m2

d,2 + m2
d,3

m2
d,2 − m2

d,3

[
− m2

u,1 s12 c12 s213

+m2
u,2 c12 s23 s13

(
s12 s23 s13 − c12 c23 cos(δ13)

)

+ m2
u,3 c12 c23 s13

(
s12 c23 s13 + c12 s23 cos(δ13)

)]

+
m2

u,1 + m2
u,2

m2
u,1 − m2

u,2

[
m2

d,1 c12 c23

(
s12 c23 + c12 s23 s13 cos(δ13)

)

− m2
d,2 s12 c23

(
c12 c23 − s12 s23 s13 cos(δ13)

)
− m2

d,3 s23 c23 s13 cos(δ13)

]

+
m2

u,1 + m2
u,3

m2
u,1 − m2

u,3

[
m2

d,1 c12 s23

(
s12 s23 − c12 c23 s13 cos(δ13)

)

− m2
d,2 s12s23

(
c12 s23 + s12 c23 s13 cos(δ13)

)
+ m2

d,3 s23 c23 s13 cos(δ13)

]}
(92)

β23 =
3

16π2v2

{
m2

d,1 + m2
d,3

m2
d,1 − m2

d,3

[
− m2

u,1 s12 c12 s13 cos(δ13)

+ m2
u,2 s12 s23

(
s12 c23 + c12 s23 s13 cos(δ13)

)

− m2
u,3 s12 c23

(
s12 s23 − c12 c23 s13 cos(δ13)

)]

+
m2

d,2 + m2
d,3

m2
d,2 − m2

d,3

[
m2

u,1 s12 c12 s13 cos(δ13)

+m2
u,2 c12 s23

(
c12 c23 − s12 s23 s13 cos(δ13)

)

− m2
u,3 c12 c23

(
c12 s23 + s12 c23 s13 cos(δ13)

)]
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+
m2

u,1 + m2
u,2

m2
u,1 − m2

u,2

[
− m2

d,1 c12 c23 s13

(
c12 s23 s13 + s12 c23 cos(δ13)

)

+ m2
d,2 s12 s13

(
c12 c2

23 cos(δ13) − s12 s23 c23 s13

)
+ m2

d,3 s23 c23 s213

]

+
m2

u,1 + m2
u,3

m2
u,1 − m2

u,3

[
m2

d,1 c12 s23 s13

(
c12 c23 s13 − s12 s23 cos(δ13)

)

+ m2
d,2 s12 s23 s13

(
s12 c23 s13 + c12 s23 cos(δ13)

)
− m2

d,3 s23 c23 s213

]

+
m2

u,2 + m2
u,3

m2
u,2 − m2

u,3

[
m2

d,1

(
s23 c23

{
s212 − c2

12 s213
}

+s12 c12 s13
{

s223 − c2
23

}
cos(δ13)

)

+ m2
d,2

(
s23 c23

{
c2
12 − s212 s213

}
− s12 c12 s13

{
s223 − c2

23

}
cos(δ13)

)

− m2
d,3 s23 c23 c2

13

]}
(93)

β13 =
3

16π2v2

{
m2

d,1 + m2
d,3

m2
d,1 − m2

d,3

[
m2

u,1 c2
12 s13 c13

−m2
u,2 c12s23 c13

(
c12 s23 s13 + s12 c23 cos(δ13)

)

− m2
u,3 c12 c23 c13

(
c12 c23 s13 − s12 s23 cos(δ13)

)]

+
m2

d,2 + m2
d,3

m2
d,2 − m2

d,3

[
m2

u,1 s212 s13 c13

−m2
u,2 s12 s23 c13

(
s12 s23 s13 − c12 c23 cos(δ13)

)

− m2
u,3 s12 c23 c13

(
s12 c23 s13 + c12 s23 cos(δ13)

)]

+
m2

u,1 + m2
u,2

m2
u,1 − m2

u,2

[
m2

d,1 c12 s23 c13

(
c12 s23 s13 + s12 c23 cos(δ13)

)

+ m2
d,2 s12 s23 c13

(
s12 s23 s13 − c12 c23 cos(δ13)

)
− m2

d,3 s223 s13 c13

]

+
m2

u,1 + m2
u,3

m2
u,1 − m2

u,3

[
m2

d,1 c12 c23 c13

(
c12 c23 s13 − s12 s23 cos(δ13)

)

+ m2
d,2 s12 c23 c13

(
s12 c23 s13 + c12 s23 cos(δ13)

)
− m2

d,3 c2
23 s13 c13

]}
(94)



210 C. Balzereit et al.: Renormalization group evolution of the CKM matrix

βδ =
3

16π2v2 sin(δ13)

{
m2

d,1 + m2
d,2

m2
d,1 − m2

d,2

[
m2

u,2
s23 c23 s13

s12 c12
− m2

u,3
s23 c23 s13

s12 c12

]

+
m2

d,1 + m2
d,3

m2
d,1 − m2

d,3

[
m2

u,1

s12 c12 s13
{

c2
23 − s223

}
s23 c23

+ m2
u,2 s12 s23

{
c2
12 − c2

23

}
s213 + c2

12 c2
23 c2

13

c12 c23 s13

+m2
u,3 s12 c23

s223 s213 + c2
12

{
c2
23 c2

13 − 1
}

c12 s23 s13

]

+
m2

d,2 + m2
d,3

m2
d,2 − m2

d,3

[
m2

u,1

s12 c12 s13
{

c2
23 − s223

}
s23 c23

+ m2
u,2 c12 s23

{
c2
12 − c2

13

}
c2
23 − s212 s223 s213

s12 c23 s13

+ m2
u,3 c12 c23

c2
23 s213 + s223 c2

13 + c2
12

{
c2
23 c2

13 − 1
}

s12 s23 s13

]

+
m2

u,1 + m2
u,2

m2
u,1 − m2

u,2

[
− m2

d,1 c12 c23

c2
12 s213 + s212 c2

13 + c2
23

{
c2
12 c2

13 − 1
}

s12 s23 s13

− m2
d,2 s12 c23

c2
12

{
c2
23 − c2

13

}
− s212 s223 s213

c12 s23 s13

+m2
d,3

s23 c23 s13
{

c2
12 − s212

}
s12 c12

]

+
mu12 + m2

u,3

mu12 − m2
u,3

[
− m2

d,1 c12 s23
s212 s213 + c2

23

{
c2
12 c2

13 − 1
}

s12 c23 s13

− m2
d,2 s12 s23

−
{

c2
12 − c2

23

}
s213 + c2

12 c2
23 c2

13

c12 c23 s13

−m2
d,3

s23 c23 s13
{

c2
12 − s212

}
s12 c12

]

+
m2

u,2 + m2
u,3

m2
u,2 − m2

u,3

[
m2

d,1
s12 c12 s13

s23 c23
− m2

d,2
s12 c12 s13

s23 c23

]}
. (95)

γv = − 2Nc

16π2v2

[
m2

u,1 + m2
u,2 + m2

u,3 + m2
d,1 + m2

d,2 + m2
d,3

]
(96)

γu,1 =
3

16π2v2

[
m2

u,1 − c2
12 c2

13 m2
d,1 − s212 c2

13 m2
d,2 − s213 m2

d,3

]
− 2

αs

π
(97)

γu,2 =
3

16π2v2

[
m2

u,2 −
(

s212 c2
23 + c2

12 s223 s213 + 2 s12 c12 s23 c23 s13 cos(δ13)
)

m2
d,1

−
(

c2
12 c2

23 + s212 s223 s213 − 2 s12 c12 s23 c23 s13 cos(δ13)
)

m2
d,2 − s223 c2

13 m2
d,3

]
− 2

αs

π
(98)
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γu,3 =
3

16π2v2

[
m2

u,3 −
(

s212 s223 + c2
12 c2

23 s13 − 2 s12 c12 s23 c23 s13 cos(δ13)
)

m2
d,1

−
(

c2
12 s223 + s212 c2

23 s213 + 2 s12 c12 s23 c23 s13 cos(δ13)
)

m2
d,2

−c2
23 c2

13 m2
d,3

]
− 2

αs

π
(99)

γd,1 =
3

16π2v2

[
m2

d,1 − c2
12 c2

13 m2
u,1

−
(

s212 c2
23 + c2

12 s223 s213 + 2 s12 c12 s23 c23 s13 cos(δ13)
)

m2
u,2

−
(

s212 s223 + c2
12 c2

23 s213 − 2 s12 c12 s23 c23 s13 cos(δ13)
)

m2
u,3

]
− 2

αs

π
(100)

γd,2 =
3

16π2v2

[
m2

d,2 − s212 c2
13 m2

u,1

−
(

c2
12 c2

23 + s212 s223 s213 − 2 s12 c12 s23 c23 s13 cos(δ13)
)

m2
u,2

−
(

c2
12 s223 + s212 c2

23 s213 + 2 s12 c12 s23 c23 s13 cos(δ13)
)

m2
u,3

]
− 2

αs

π
(101)

γd,3 =
3

16π2v2

[
m2

d,3 − s213 m2
u,1 − s223 c2

13 m2
u,2 − c2

23 c2
13 m2

u,3

]
− 2

αs

π
(102)


